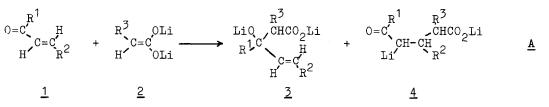
The Reaction of Dilithium Carboxylates with Acyclic  $\alpha$ . $\beta$ -Enones- a Continuous Transition from 1.2- to 1.4-Addition.


Johann Mulzer\*, Georg Hartz, Uwe Kühl, Gisela Brüntrup

Institut für Organische Chemie der Universität, Karlstrasse 23, D 8000 München 2, West-Germany

## (Received in UK 26 May 1978; accepted for publication 12 June 1978)

The addition of resonance stabilized organolithium derivatives to  $\not{a}$ -encnes has been investigated intensively during the past few years<sup>1</sup>. From the experimental data which have thus been accumulated one may draw the following conclusions. <u>a</u>. Under kinetic control each one of the various types of organolithium compounds shows a characteristic preference for either 1.2- or 1.4-addition. Substituent effects can only modify but not totally change this intrinsic reactivity. <u>b</u>. Under thermodynamic control generally the 1.4-adduct is predominantly formed<sup>2</sup>.

We studied the reaction of the  $\boldsymbol{\ll} \boldsymbol{\beta}$ -unsaturated ketones <u>1</u> with the dilithium carboxylates  $\underline{2}^3$  under kinetically controlled conditions (THF, -50°, 1 hr) (equation <u>A</u>) and found that by an appropriate choice of the substituents R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> the whole range from pure <u>3</u> to pure <u>4</u> may be covered (Table 1). To our knowledge <u>2</u> is the first organolithium species with which such a continuous transition from clean 1.2- to clean 1.4-addition can be accomplished under kinetic control.



The primary adducts  $\underline{3}$  and  $\underline{4}$  were hydrolyzed with 2N H<sub>2</sub>SO<sub>4</sub> to give the 4.5-unsaturated 3-hydroxycarboxylic acids  $\underline{5}$  and the 5-ketocarboxylic acids  $\underline{6}$  respectively.

The irreversibility of reaction <u>A</u> was proved by converting <u>5f</u> into <u>3f</u> with 2 mole equivalents of lithium diisopropylamide in THF and heating the reaction mixture to  $50^{\circ}$  for 2 hrs. After hydrolytic workup <u>5f</u> without any trace of <u>6f</u> was isolated in quantitative yield. An analogous experiment was performed with pure <u>6f</u> and again the starting material was recovered unchanged. These results are in a striking contrast to those obtained from <u>7</u> and <u>8</u> which despite their similarity to <u>2</u> react with enones <u>irreversibly</u> at -78<sup>°</sup>

and reversibly at room temperature<sup>4</sup>.

 $\begin{array}{cccc} C_{6}H_{5}CH=C=NLi & X & OLi \\ CH_{3}CH=C & (X = OC_{6}H_{5}, OCH_{3}, SC_{6}H_{5}, OCH_{5}, SC_{6}H_{5}, OCH_{5}, OCH_{5}, SC_{6}H_{5}, OCH_{5}$ 

The ratio of 3:4 in reaction <u>A</u> is determined by two factors: <u>1</u>. the intrinsic preference of 2 for either 1.2- or 1.4-attack. 2. the steric and electronic effects exerted by  $\mathbb{R}^1, \mathbb{R}^2$  and  $\mathbb{R}^3$ . To get some insight into the first factor we performed A with a minimum number of substituents and reacted methyl vinyl ketone with dilithium acetate (run a, Table 1). From the fact that 3a was obtained exclusively we concluded that <u>2</u> has a natural favor for 1.2-addition. In order to see to what extent this intrinsic reactivity can be modified by substituent effects we kept  $R^2 = C_6 H_5$  constant and varied only  $R^1$  and  $R^3$  (runs <u>b-o</u>). From Table 1 it can be realized that the tendency towards 1.2-addition is maintained as long as an alkyl group occupies the  $R^{1}$ position and the steric repulsion between  $\mathbb{R}^1$  and  $\mathbb{R}^3$  which arises during the attack of  $\underline{2}$  at the carbonyl carbon of  $\underline{1}$  is only moderate. This is illustrated by runs <u>b-e</u> which furnish 3 as the sole product. If, however,  $R^1 = C(CH_3)_3$ (runs  $\underline{f}-\underline{j}$ ), the attack at the carbonyl carbon is drastically retarded by the steric congestion between  $R^1$  and  $R^3$  and, consequently, 1.4-addition gains in importance. This trend is substantially enhanced by increasing the size of  $\mathbb{R}^3$ ; so the ratio of <u>3:4</u> switches from 69:31 for  $\mathbb{R}^3 = \mathbb{H}$  (run <u>f</u>) to 0:100 for  $R^{3} = CH_{3}, C_{2}H_{5}, CH(CH_{3})_{2}$  and  $C(CH_{3})_{3}$  (runs <u>g-j</u>). Turning to the systems with  $R^{1} = C_{6}H_{5}$  we have to take into account that a phenyl group in this position influences the reactivity of 1 not only by a steric but also by a resonance effect which deactivates the carbonyl group towards nucleophilic attacks. This explains the decrease in the ratio of <u>3:4</u> which is observed on comparing runs <u>d</u> and <u>k</u>; in both cases the steric interactions for the 1.2-addition pathway are alike; however, k is influenced by the resonance effect of the  $R^1$ -phenyl group and <u>d</u> not. As a consequence of this it may be expected that a combinantion of this phenyl substituent with bulky R<sup>2</sup>s should lead to a substantial preference for 1.4-addition. Indeed, the ratio of <u>3:4</u> goes down from 71:29 to 0:100 in the sequence <u>k,1,m,n,o</u>. Finally the influence of  $R^2$  was examined (runs p,q,r). Again steric factors play a dominant role. 2-Thienyl (run p) and 2-furyl (run q) both have one ortho-H less than a phenyl group (run  $\underline{k}$ ); this reduces the steric repulsion for the attack at the  $\beta$  -carbon of 1, and, hence, the ratio of 3:4 changes from 71:29 (run  $\underline{k}$ ) to about 60:40 in runs  $\underline{p}$  and  $\underline{q}$ . On the other hand, the bulky 1-naphthyl group in run <u>r</u> blocks the  $\beta$ -position, and <u>3r</u> is predominantly formed in this case.

In summary we may say that although reaction <u>A</u> has an intrinsic preference to proceed via 1.2-addition both steric and mesomeric effects of the substituents  $R^1, R^2$  and  $R^3$  may be efficiently combined to accomplish clean 1.4-ad-

| kun | R1                                | R <sup>2</sup>    | к <sup>3</sup>                | ratio of<br><u>5:6</u> (= <u>3:4</u> ) <sup>a</sup> | <sup>n₁p</sup> b<br>(°C) | yield<br>% |
|-----|-----------------------------------|-------------------|-------------------------------|-----------------------------------------------------|--------------------------|------------|
| a   | CH 5                              | h                 | А                             | 100:0                                               | oil <sup>C</sup>         | 68         |
| b   | 11                                | °6 <sup>H</sup> 5 | Н                             | 100:0                                               | 11                       | 72         |
| с   | с <sub>2</sub> н <sub>5</sub>     | 11                | н                             | 100:0                                               | 86-87                    | 80         |
| d   | CH(CH <sub>3</sub> ) <sub>2</sub> | 17                | Н                             | 100:0                                               | 125-126                  | 73         |
| е   | C2H5                              | 11                | C <sub>2</sub> H <sub>5</sub> | 100:0                                               | 80-85                    | 85         |
| f   | C(CH <sub>3</sub> ) <sub>3</sub>  | 11                | Н                             | 69 <b>:</b> 31                                      | 106-118                  | 45         |
| g   | **                                | 11                | CH <sub>3</sub>               | 0:100                                               | 80 <b>-1</b> 05          | 76         |
| h   | н                                 | 17                | С <sub>2</sub> Н <sub>5</sub> | 0:100                                               | 104-124                  | 83         |
| i   | 11                                | 11                | сн(сн <sub>3</sub> )2         | 0:100                                               | 166-172                  | 67         |
| j   | 11                                | 11                | C(CH3)3                       | 0:100                                               | 116-117                  | 79         |
| k   | °6 <sup>H</sup> 5                 | 17                | Н                             | 71:29                                               | 137-138                  | 67         |
| 1   | 17                                | 17                | СНЗ                           | 68:32                                               | 126-134                  | 85         |
| m   | 11                                | N                 | С <sub>2</sub> н <sub>5</sub> | 62 <b>:</b> 38                                      | 135-136                  | 65         |
| n   | 11                                | Ħ                 | сн(сн3)2                      | 50:50                                               | 131-141                  | 77         |
| 0   | 11                                | 11                | С(СН3)3                       | 0:100                                               | 137-138                  | 88         |
| р   | 11                                | 2-thienyl         | Н                             | 65 <b>:</b> 35                                      | 104-108                  | 73         |
| q   | 11                                | 2 <b>-</b> furyl  | Н                             | 60 <b>:4</b> 0                                      | 122-126                  | 57         |
| r   | 17                                | 1-naphthyl        | Н                             | 85 <b>:</b> 15                                      | 175-176                  | 85         |

<u>Table 1.</u> Ratios of <u>5:6</u> (= <u>3:4</u>) and total yields of <u>5+6</u> resulting from reaction <u>A</u>.

a) This ratio was determined by means of the relative intensities of the  $^{1}\mathrm{H-NMR-signals}$  of the vinyl protons of 5 and of the protons at C-2,C-3 and C-4 of 6.

b) With the exception of <u>c</u> and <u>d</u>, which furnish pure <u>5c</u> and <u>5d</u> respectively, the melting points refer to the mixtures of isomers and diastereomers obtained from <u>A</u> without further purification.

c) bp. 135-140<sup>0</sup>C/0.001 torr.

2952

dition as well.

5 and 6 are valuable synthetic intermediates. So in the following letter a new synthesis of substituted 1.3-butadienes making use of 5 will be described. On the other hand, the preparative utility of 5-ketocarboxylic acids like 6 has been discussed extensively by STETTER who developed a method for preparing simply substituted compounds of this class in three steps starting from resorcine<sup>6</sup>. In case of bulky R<sup>1</sup>- or R<sup>3</sup>- groups reaction <u>A</u> represents a <u>one-step</u> alternative to STETTER's procedure. <u>A</u> has the additional advantage of making even complicated substitution patterns of <u>6</u> readily available (e.g. in runs <u>g,h,i,j,0</u>).

## REFERENCES AND NOTES.

- For example, D.Seebach, Snthesis <u>1969</u>, 17; J.L.Hermann, J.E.Richman, R.H.Schlessinger, Tetrahedron Lett. <u>1973</u>, 3271; G.Stork, L.Maldonado, J.Am.Chem.Soc.<u>96</u>, 5272(1974); G.Kyriakakou, M.C.Roux-Schmitt, J.Seyden-Penne, Tetrahedron <u>31</u>, 1883(1975); M.Cossentini, B.Deschamps, N.Trong-Anh, J.Seyden-Penne, ibid. <u>33</u>, 409(1977); B.Deschamps, J.Seyden-Penne, ibid. <u>33</u>, 413(1977); P.C.Ostrowski, V.V.Kane, Tetrahedron Lett. <u>1977</u>, 3549; R. Bürstinghaus, D.Scebach, Chem.Ber.<u>110</u>, 841(1977); S.Yamagiwa, N.Hoshi, H. Sato, H.Kosugi, H.Uda, J.C.S.Perkin I <u>1978</u>, 214; E.M.Kaiser, P.L.Knutson, J.R.McClure, Tetrahedron Lett. <u>1978</u>, 1747.
- 2. For an exception see B.Deschamps, N.Trong-Anh, J.Seyden-Penne, Tetrahedron Lett. 1973, 527.
- G.W.Moersch, A.R.Burkett, J.Org.Chem.<u>36</u>, 1149(1971); A.P.Krapcho, E.G. Jahngen Jr., ibid.<u>39</u>, 1650(1974); J.Mulzer, J.Segner, G.Brüntrup, Tetrahedron Lett.<u>1977</u>, 4651.
- 4. A.G.Schultz, Y.K.Yee, J.Org.Chem.<u>41</u>,4044(1976); R.Sauvetre, J.Seyden-Penne, Tetrahedron Lett.<u>1976</u>,3949.
- 5. J.Mulzer, U.Kühl, G.Brüntrup, following letter.
- H.Stetter in Neuere Methoden der Präparativen Organischen Chemie, Bd.
  Verlag Chemie, Weinheim, 1960.